😱😱😱😱😱😱😱 Астрономы впервые получили изображение черной дыры!!!
Телескоп горизонта событий (Event Horizon Telescope, EHT) — антенная решетка планетарного масштаба из восьми наземных радиотелескопов, объединенных в международную коллаборацию – был создан для получения изображений черных дыр. Сегодня на скоординированных пресс-конференциях, которые проводятся по всему миру, исследователи EHT представляют результаты своей работы: первое прямое визуальное изображение сверхмассивной черной дыры и ее тени.
Этот революционный результат сегодня был представлен в серии из шести статей, опубликованных в специальном выпуске The Astrophysical Journal Letters. Получено изображение черной дыры в центре M87, массивной галактики в близлежащем скоплении галактик в Деве. Эта черная дыра массой в 6.5 миллиардов солнечных масс находится от нас на расстоянии 55 миллионов световых лет 2.
Решетка EHT объединяет в одно целое радиотелескопы, находящиеся в разных точках Земли, образуя уникальный виртуальный телескоп размером с земной шар 3. EHT открывает перед учеными новый путь изучения самых необычных объектов Вселенной, предсказываемых эйнштейновской общей теорией относительности. И происходит это в год столетия исторического эксперимента, который впервые подтвердил эту теорию 4.
"Мы получили первый снимок черной дыры", - сказал руководитель проекта EHT Шепард Дэлимен из Гарвардского Смитсонианского астрофизического центра. "Это научное достижение чрезвычайной важности, которое увенчало усилия коллектива из более 200 исследователей".
Черные дыры – необычные космические объекты, имеющие гигантские массы и исключительно компактные размеры. Эти объекты оказывают очень сильное влияние на свои окрестности, деформируя пространство-время и нагревая окружающее их вещество до экстремальных температур.
"Когда черная дыра погружена в яркий диск светящегося газа, там должна образоваться темная область, напоминающая тень. Это явление, предсказываемое общей теорией относительности Эйнштейна, никогда раньше не наблюдалось", — объясняет глава Научного совета EHT Хейно Фальке из университета Рэдбуд в Нидерландах. "Эта «тень», образующаяся вследствие гравитационного искривления света и его захвата горизонтом событий, многое говорит о природе этих удивительных объектов. Именно она и позволила нам измерить гигантскую массу черной дыры в M87."
Применение целого ряда методов калибровки и построения изображений выявило кольцеобразную структуру с темной центральной областью — «тенью» черной дыры — которая воспроизводилась в многочисленных независимых наблюдениях на EHT.
"Когда мы уверенно убедились, что мы действительно получили изображение тени, мы сравнили наши результаты с обширной коллекцией компьютерных моделей, отражающих физические особенности искривленного пространства, нагретого до сверхвысоких температур вещества и сильных магнитных полей. Многие свойства полученного изображения неожиданно хорошо соответствуют нашим теоретическим представлениям”, - отмечает Пол Хо, член Научного Комитета EHT, директор Восточно-Азиатской обсерватории. “Это дает нам уверенность в правильности интерпретации наших наблюдений, в том числе наших оценок массы черной дыры".
"Несоответствие тории и наблюдений всегда драматический момент для теоретика. Было большим облегчением и поводом для гордости осознать, что на этот раз наблюдения так хорошо соответствуют ашим предсказаниям", — добавляет член Научного Комитета EHT Лучиано Реззолла из университета Гёте в Германии.
Создание EHT было технической задачей величайшей сложности, решение которой потребовало создания и отладки всемирной сети из восьми уже существовавших радиотелескопов, установленных в труднодоступных высокогорных местностях: на вершинах вулканов на Гавайских островах и в Мексике, в горах Аризоны в США и Сьерра Невады в Испании, в чилийской высокогорной пустыне Атакама и в Антарктике.
Наблюдения на EHT основывались на применении методики интерферометрии со сверхдлинной базой (VLBI), которая предполагает синхронизацию всех телескопов всемирной сети и использует вращение нашей планеты для образования единого гигантского глобального телескопа, работающего на волне 1.3 мм. Метод VLBI позволил EHT достичь углового разрешения в 20 микросекунд дуги, что соответствует способности читать нью-йоркскую газету из парижского кафе 6.
Выдающийся результат был получен решеткой, состоящей из следующих телескопов: ALMA, APEX, 30-метровый телескоп IRAM, телескоп Джеймса Клерка Максвелла, Большой миллиметровый телескоп Альфонсо Серрано, Субмиллиметровая решетка, Субмиллиметровый телескоп и телескоп на Южном полюсе. Петабайты полученных этими телескопами наблюдательных данных были суммированы высокоспециализированными суперкомпьютерами, установленными в Институте радиоастрономии Макса Планка и обсерватории Хэйстек (MIT).
В этой общемировой кооперации важнейшая роль принадлежала европейскому оборудованию и финансированию: использованию современных европейских телескопов и поддержке со стороны Европейского совета по научным исследованиям—в частности, предоставленному им гранту в €14 миллионов проекту BlackHoleCam 7. Ключевую роль сыграла и поддержка со стороны ESO, IRAM и Общества Макса Планка. "Этот результат базируется на десятилетиях европейских исследований в области астрономии миллиметровых волн”, - комментирует Карл Шустер, директор IRAM и член Комитета EHT.
Создание EHT и наблюдения, результаты которых демонстрируются сегодня, являются кульминацией продолжавшихся в течение десятилетий наблюдательных, технических и теоретических работ. Это пример глобальной кооперации, которая потребовала тесной совместной работы исследователей всего мира. Чтобы создать EHT из уже существовавших прежде инфраструктур, потребовались объединенные усилия тринадцати институтов-партнеров и поддержка множества агентств. Основное финансирование было обеспечено Национальным фондом научных исследований США (NSF), Европейским советом по научным исследованиям ЕС (ERC) и финансовыми организациями Восточной Азии.
“ESO гордится своим значительным вкладом в полученный результат: этот вклад обусловлен лидирующим положением ESO в европейской науке и тем, что ESO принадлежат два компонента решетки EHT, находящихся в Чили—ALMA и APEX”, - говорит Генеральный директор ESO Хавьер Барконс. “ALMA – наиболее чувствительный элемент EHT и ее 66 высокоточных антенн сыграли ключевую роль в достижении успеха EHT”.
"Мы достигли результата, который еще поколение назад считался недостижимым", — заключает Дэлимен. "Объединение прорывных технологий, кооперации крупнейших радиоастрономических обсерваторий мира и новых алгоритмов привело к открытию совершенно нового наблюдательного окна, которое позволяет изучать черные дыры и горизонт событий.”
Примечания
1 Тень черной дыры – это наибольшее возможное приближение к изображению самой черной дыры, полностью темного объекта, который не выпускает из себя свет. Граница черной дыры—«горизонт событий» (этому термину EHT и обязан своим названием) примерно в 2.5 раза меньше тени, которую он отбрасывает, и в данном случае составляет в поперечнике немного меньше 40 миллиардов километров.
2 Сверхмассивные черные дыры являются сравнительно маленькими астрономическими объектами—что до сих пор и делало невозможными их прямые наблюдения. Так как размеры горизонта событий черной дыры пропорциональны ее массе, то чем массивнее черная дыра, тем больше ее тень. Благодаря своей огромной массе и относительной близости к Земле черная дыра в центре галактики M87, как это и предсказывалось, является для земного наблюдателя одной из крупнейших по своим угловым размерам, что и сделало ее идеальной мишенью для EHT.
3 Хотя телескопы решетки не связаны друг с другом физически, получаемые ими наблюдательные данные можно точно синхронизировать при помощи атомных часов—водородных мазеров. Во время глобальной наблюдательной кампании 2017 года такие синхронные наблюдения были выполнены на длине волны 1.3 мм. Каждый телескоп EHT в ходе кампании получал громадное количество данных: 350 терабайт в день. Эти данные записывались на высокопроизводительные жесткие диски, наполненные гелием, а затем отсылались на высокоспециализированные суперкомпьютеры—так называемые корреляторы—в Институте радиоастрономии Макса Планка и обсерватории Хэйстек (MIT) для суммирования. Эти данные после сложнейших процедур обработки с использованием новейших вычислительных методов, разработанных участниками коллаборации, преобразовывались в изображения.
4 100 лет назад на о.Принсипи неподалеку от Африканского побережья и в Собраль в Бразилии были направлены две экспедиции с целью наблюдений солнечного затмения 1919 года и проверки на основе этих наблюдений общей теории относительности: будет ли свет звезд искривляться вокруг солнечного лимба, как это предсказывал Эйнштейн. Спустя сто лет участники группы EHT отправились на некоторые из установленных на самой большой высоте и изолированных от внешнего мира радиотелескопов, чтобы еще раз протестировать правильность нашего понимания законов гравитации.
6 Будущие наблюдения на EHT будут выполнены с существенно более высокой чувствительностью: к сети присоединятся обсерватория IRAM NOEMA, Гренландский телескоп и телескоп обсерватории Китт Пик.
7 BlackHoleCam – финансируемый ЕС проект, направленных на получение изображений, измерение и понимание астрофизических черных дыр. Главной целью BlackHoleCam и Телескопа горизонта событий (EHT) – получить первые в истории изображения черной дыры с массой в миллиард солнечных масс в близлежащей галактике M87 и менее массивного объекта Стрелец A*, сверхмассивной черной дыры в центре Млечного Пути, нашей Галактики. Эти наблюдения позволяют с высокой точностью определить искажения пространства-времени, вызванные черной дырой.
https://www.eso.org/public/russia/news/eso1907/